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Abstract. In the Late Nineties, the classical approach to decode BCH codes
based on Berlekamp’s key equation was upsetted by the application of Gröbner
bases to the problem; it appeared a series of papers which terminated with
two different proposals: Orsini-Sala general error locator polynomial [14] and
Augot et al. Newton-Based decoder [1]; both approaches payed not only the
hard pre-computation of a Gröbner basis but (mainly) the density of their
decoders.

A recent work-in-progress [4, 5, 6, 7] reconsidered the same problem
within the frame of Grobner-free Solving, an approach aiming to avoid the
computation of a Gröbner basis of a (0-dimensional) ideal J ⊂ P in favour
of combinatorial algorithms, describing instead the structure of the algebra
P/J . The consequence is a preprocessing which is quadratic (and a decoding
which is linear) on the length of the code.

Extended abstract
In 1990 Cooper [10, 11] suggested to use Gröbner bases’ computation in order
to decode cyclic codes. Let C be a binary BCH code correcting up to t errors,
s̄ = (s1, . . . , s2t−1) be the syndrome vector associated to a received word. Cooper’s
idea consisted in interpreting the error locations z1, . . . zt of C as the roots of the
syndrome equation system: fi :=

∑t
j=1 z

2i−1
j − s2i−1 = 0, 1 ≤ i ≤ t, and, conse-

quently, the plain error locator polynomial as the monic generator g(z1) of the prin-
cipal ideal

{∑t
i=1 gifi, gi ∈ F2(s1, . . . , s2t−1)[z1, . . . , zt]

}⋂
F2(s1, . . . , s2t−1)[z1],

which was computed via the elimination property of lexicographical Gröbner bases.
In a series of papers Chen et al. improved and generalized Cooper’s approach

to decoding. In particular, for a q-ary [n, k, d] cyclic code, with correction capability
t, they made two alternative proposals.

First of all, denoting, for an error with weight µ, z1, . . . , zµ the error loca-
tions, y1, . . . , yµ the error values and s1, . . . , sn−k ∈ Fqm the associated syndromes,
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they interpreted [8] the coefficients of the plain error locator polynomial as the el-
ementary symmetric functions σj and the syndromes as the Waring functions,
si =

∑µ
j=1 yjz

i
j . They suggested to deduce the σj ’s from the (known) si’s via a

Gröbner basis computation for the ideal generated by the Newton identities; a
similar idea was later developed in [1].

Alternatively, they considered [9] the syndrome variety(s1, . . . , sn−k, y1, . . . , yt, z1, . . . , zt) ∈ (Fqm )n−k+2t : si =

µ∑
j=1

yjz
i
j , 1 ≤ i ≤ n− k


and proposed to deduce, via a Gröbner basis pre-computation in

Fq[x1, . . . , xn−k, y1, . . . , yt, z1, . . . , zt],

a series of polynomials gµ(x1, . . . , xn−k, Z), µ ≤ t such that, for any error with
weight µ and associated syndromes s1, . . . , sn−k ∈ Fqm , gµ(s1, . . . , sn−k, Z) in
Fqm [Z] is the plain error locator polynomial.

Their approach was improved in a series of papers which introduced further
applications of groebnerian technologies and which culminated with [14] which
stated

Theorem 0.1. [14] In the Gröbner basis of the ideal vanishing in each point of the
syndrome variety, there is a unique polynomial, the general error locator polyno-
mial, with shape

g = ztt +

t∑
l=1

at−l(s1, . . . , sn−k)zt−lt .

Such polynomial satisfies the following property: given a syndrome vector
s = (s1, . . . , sn−k) ∈ (Fqm)n−k corresponding to an error with weight µ ≤ t, its t
roots are the µ error locations plus zero counted with multiplicity t− µ.

For a survey of Cooper Philosophy see [13], see [3] for Sala-Orsini locator.
Recently the same problem has been reconsidered in a group of papers [4, 6, 5]

within the frame of Grobner-free Solving, an approach aiming to avoid the Gröbner
bases computation for (0-dimensional) ideals.

In particular, given the syndrome variety

Z =
{

(c+ d, c3 + d3, c, d), c, d ∈ F∗2m , c 6= d
}

of a BCH [2m − 1, 2]-code C over F2m , and denoted I(Z) the ideal of points of Z,
[4] is able with good complexity to produce, via Cerlienco-Mureddu Algorithm [2]
and Lazard Theorem, the set N := N(I(Z)) and proves that the related Gröbner
basis has the shape

G = (xn1 − 1, g2, z2 + z1 + x1, g4)

where (see [14]) g2 =
x

n+1
2

2 −x
n+1
2

1

x2−x1
= x

n−1
2

2 +
∑n−1

2
i=1

(n−1
2
i

)
xi1x

n−1
2 −i

2 and g4 = z21 −∑
t∈N ctt is Sala-Orsini general error locator polynomial. Such result allowed [4]
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to remark (applying Marinari-Mora Theorem) that, for decoding, it is sufficient to
compute the polynomial, half error locator polynomial (HELP)

h(x1, x2, z1) := z1 −
∑
t∈H

ctt where H := {xi1x
j
2, 0 ≤ i < n, 0 ≤ j < n− 1

2
}

which satisfies

h(c(1 + a2j+1), c3(1 + a3(2j+1)), z1) = z1 − c, for each c ∈ F∗2m , 0 ≤ j <
n− 1

2
,

the other error ca2j+1 been computable via the polynomial z2 + z1 + x1 ∈ G as
z2 := x1 − z1 = (c+ ca2j+1)− c = ca2j+1.

Such polynomial can be easily obtained with good complexity via Lundqvist
interpolation formula [12] on the set of points{

(c+ ca2j+1, c3 + c3a3(2j+1), c), c ∈ F∗2m , 0 ≤ j <
n− 1

2

}
.

Experiments showed that, in that setting, HELP has a very sparse formula, which
has been proved (see [4]):

h(x1, x2, z1) = z1 +

n−1
2∑
i=1

aix
(4−3i) mod n
1 x

(i−1) mod n−1
2

2

where the unknown coefficient can be deduced by Lundqvist interpolation on
the set of points {(1 + a2j+1, 1 + a3(2j+1), 1), 0 ≤ j < n−1

2 } and on the terms

{x(4−3i) mod n
1 x

(i−1) mod n+1
2

2 , 1 ≤ i < n+1
2 }.

This suggested [6] to consider a binary cyclic code C over GF (2m), with length
n | 2m − 1 and primary defining set SC = {1, l}. Thus it denoted by a a primitive
(2m − 1)th root of unity so that F2m = Z2[a], α := 2m−1

n and b := aα a primitive
nth root of unity, Rn := {e ∈ F2m : en = 1} and Sn := Rn t {0}; considered the
following sets of points

Z2 := {(c+ d, cl + dl, c, d), c, d ∈ Rn, c 6= d},#Z×2 = n2 − n;
Z+ := {(c+ d, cl + dl, c, d), c, d ∈ Sn, c 6= d},#Z×+ = n2 + n,
Zns := {(c+d, cl+dl, c, d), c, d ∈ Sn}\{(0, 0, c, c), c ∈ Rn},#Z×ns = n2+n+1,
Ze := {(c+ d, cl + dl, c, d), c, d ∈ Sn},#Z×e = (n+ 1)2,

and denoted, for ∗ ∈ {e, ns,+, 2},
• J∗ := I(Z∗), the ideal of all polynomials vanishing in Z∗,
• N∗ := N(J∗) the Gröbner escalier of J∗ w.r.t. the lex ordering with x1 <
x2 < z1 < z2 and
• Φ∗ : Z∗ → N∗ a Cerlienco-Mureddu correspondence [2].

Then it assumed to know
(a). the structure of the order ideal N2, #N2 = n2 − n, i.e. a minimal basis

{t1, . . . , tr}, ti := xai1 x
bi
2 , of the monomial ideal T \ N2 = T(I(Z2)),

(b). a Cerlienco Mureddu Correspodence Φ2 : N2 → Z2
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and deduced with elementary arguments N∗ and Φ∗ for ∗ ∈ {e, ns,+}.
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